Compact operators that commute
with a contraction

K. Kellay and M. Zarrabi

Abstract. Let T be a Cy—contraction on a separable Hilbert space. We assume
that Iy — T*T is compact. For a function f holomorphic in the unit disk D
and continuous on D, we show that f(7T') is compact if and only if f vanishes
on o(T)N'T, where o(T) is the spectrum of T" and T the unit circle. If f is
just a bounded holomorphic function on D, we prove that f(T") is compact if
and only if nh_)nolo |7 f ()| = 0.
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1. Introduction

Let H be a separable Hilbert space, and £(H) the space of all bounded operators
on H. For T € L(H), we denote by o(T') the spectrum of T. The Hardy space H>
is the set of all bounded and holomorphic functions on D.

A contraction T' on H is called a Cy—contraction (or in class Cp) if it is
completely nonunitary and there exists a nonzero function § € H*> such that
O(T) = 0. A contraction T is said essentially unitary if Iy — T*T is compact,
where Iy is the identity map on H.

Let T be a Cy—contraction on H, and let H*(T') = {f(T) : f € H*} be the
subspace of the commutant {T'} = {A € L(H) : AT = TA} obtained from the
Nagy—Foias functional calculus. In this note we study the question of when H*>(T')
contains a nonzero compact operator. B. Sz—Nagy [12] proved that {T'}’ contains
always a nonzero compact operator, but there exists a Cy—contraction 7" such that
zero is the unique compact operator contained in H*(T'). Nordgreen [15] proved
that if T is an essentially unitary Ch—contraction then H*(T') contains a nonzero
compact operator. There are also results about the existence of smooth operators
(finite rank, Schatten—von Neuman operators) in H>(T') (see [17]). It is also shown
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in Atzmon’s paper [2], that if T is a cyclic completely nonunitary contraction such
that o(T) = {1} and

log [|[T7"|| = O(v/n), n — oo, (1)
then T — Iy is compact.

Let A(D) be the usual disc algebra, i.e. the space of all functions which are
holomorphic on D and continuous on D. In section 2 we study the compactness of
f(T) when f is in the disk algebra. We show (Corollary 2.3), that, if f € A(D)
and if T' is a Cy—contraction which is essentially unitary, then f(7') is compact if
and only if f vanishes on o(7') N'T. The main tool used in the proof of this result
is the Beurling-Rudin theorem about the characterization of the closed ideals of
A(D) . We show also for a large class of Cy—contractions that the condition “ T
is essentially unitary” is necessary in the above result (Proposition 2.5) . As a
consequence, we obtain that if 7" is a contraction that is annihilated by a nonzero
function in A(D) and if T is cyclic (or, more generally, of finite multiplicity) then
f(T) is compact whenever f € A(D) and f vanishes on o(7T) N T. We notice that
an invertible contraction with spectrum reduced to a single point and satisfying
condition (1) is necessarily annihilated by a nonzero function in A(D) (see [1]).

In section 3, we are interested in the compactness of f(T) when f € H*>.
With the help of the corona theorem, we show (Theorem 3.4) that if T is an
essentially unitary Cp-contraction, then f(T') (f € H®) is compact if and only
if nlirr;o |IT™f(T)|| = 0. We obtain in particular that if 713{1 f(rz) = 0 for every

z€0o(T)NT, then f(T) is compact.

2. Compactness of f(7') with f in the disk algebra

Let T be a contraction on H. We will introduce some definitions and results we will
need later. We call A € ¢(T') a normal eigenvalue if it is an isolated point of o(T")
and if the corresponding Riesz projection has finite rank. We denote by 0,,,(T) the
set of all normal eigenvalues of T'. The weakly continuous spectrum of T is defined
by owe(T) = o(T) \ onp(T) (see [14], p. 113). Let us suppose that T is essentially
unitary and D \ o(T) # (. There exists a unitary operator U and a compact
operator K such that T = U + K and then we have 0,c(T) = 04 (U) C T (see
[5], [7] Theorem 5.3, p. 23 and [14] p. 115). It follows from the above observation
that if D\ o(T) # (0 then T is essentially unitary if and only if T* is essentially
unitary too.

Let T be a closed ideal of A(D). We denote by Sz the inner factor of Z,
that is the greatest inner common divisor of all nonzero functions in Z (see [8] p.

85). We set Z(I) = fﬂI{C €T: f(() =0} and J(E) = {f € AD) : fip = 0},

for E C T. We shall need the Beurling-Rudin theorem [16] (see also [8] p. 85)
about the structure of closed ideals of A(D), which states that every closed ideal
7 C A(D) has the form

T =S:H*NJ(Z(T)).
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Theorem 2.1. Let T be essentially unitary and D\ o(T) # 0. If f € A(D) and
f=0o0na(T)NT then f(T) is compact.

For the proof of this theorem we need the following lemma.

Lemma 2.2. Let Ty, T5 be two contractions on H such that Ty — Ty is compact and
f € AD). Then f(T1) is compact if and only if f(Ts) is compact too.

Proof. There exists a sequence (P,), of polynomials such that ||f — P,||.. — 0,
where || || is the supremum norm on T. For every n, P, (T3) — P, (11) is compact.
By the von Neumann inequality, we have ||(f — P,)(T)|| < ||f — Pull., ¢ =1 or 2.
So [|(f = Pn)(Ty)ll — 0 and

FB) ~ F(T) = lim(Pu(T2) - Py(T})).
Thus f(T2) — f(T1) is compact. O

Proof of Theorem 2.1. Without loss of generality, we may assume that o(T)N'T
is of Lebesgue measure zero. We set Z = {f € A(D): f(T) compact}; 7 is a
closed ideal of A(D). We have to prove that Sz = 1 and Z(Z) C o(T) NT. As
observed above, we have T" = U + K, where U is unitary and K is compact.
Moreover, we have 0,c(U) = 0y(T) C o(T) NT ([14] p. 115), and since 0,,,(U)
is countable, we see that o(U) is a subset of T of Lebesgue measure zero. By
Fatou theorem ([8] p. 80), there exists a nonzero outer function f € A(D) which
vanishes exactly on o(U). Since U is unitary we have f(U) = 0. By Lemma
2.2, f(T) is compact. This shows that S7 = 1 and Z(Z) C o(U). We shall now
show that Z(Z) C 0u,c(U). Let A € 0,,(U); A is an isolated point in o(U) and
Ker (U — Alg) is of finite dimension. There exists f € A(D) with f(\) # 0 and
flowngay = 0. Since (z — A)f(z) = 0 for every z € o(U), and since U is unitary,
(U—=Mpg)f(U)=0and f(U)(H) C Ker (U — Ag). So f(U) is of finite rank, thus
f(U) is compact and by Lemma 2.2, f(T') is compact. Hence A ¢ Z(Z). We deduce
that Z(Z) C 0y(U) C o(T) N'T, which finishes the proof.

Corollary 2.3. Let T be an essentially unitary Co—contraction and let f € A(D).
Then f(T') is compact if and only if f =0 on o(T)NT.

Proof. 1t follows from Theorem 2.1 that if f vanishes on o(7) N'T then f(7T) is
compact. Let now f € A(D) such that f(T) be compact. Let Br denote a maximal
commutative Banach algebra that contains Iy and T. We have o(T) = o, (T),
where o, (T) is the spectrum of T in Bp. Let A € o(T) N T. There exists a
character y on By such that x»(7) = A and have

IF = N F) = DT () < [T F(T)]]- (2)

Since T is in class Cy, T™x — 0 whenever © € H, (see [11] Proposition II1.4.1).
Thus for every compact set C C H,

lim sup ||T"z|| = 0.
C

n—oo xrE
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For C = f(T)(B), where B = {& € H : ||z|| < 1}, we get lim ||T™f(T)| = 0.
n—oo
Then it follows from (2) that f(\) = 0. O

Let T' € L(H). The spectral multiplicity of 7" is the cardinal number given
by the formula

pr = inf card L,

where card L is the cardinal of L and where the infimum is taken over all nonempty
sets L C H such that span{T™L; n > 0} is dense in H. Notice that yur = 1 means
that T is cyclic.

Corollary 2.4. Let T be a contraction on H with pr < +oo. Assume that there
exists a nonzero function ¢ € A(D) such that o(T) = 0. Then f(T) is compact
for every function f € A(D) that vanishes on o(T)NT.

Proof. There exists two orthogonal Hilbert subspaces H,, and Hy that are invariant
by T', such that H = H, ® Ho, T, = 1|, is unitary and Ty = T}y, is completely
nonunitary (see [11], Theorem 3.2, p. 9 or [13], p. 7). Then T is clearly in class
Cy and we have ug, < +00. By Proposition 4.3 of [4], Iy, — T To is compact. Let
[ € AD), with fio)nr = 0. Since o(Tp) C o(T), it follows from Theorem 2.1
that f(Tp) is compact. Now, since T, is unitary and o(T,) C o(T) N'T, we get
f(Ty) =0. Thus f(T) is compact. O

Remark. Let T be a cyclic contraction satisfying condition (1) and with finite
spectrum, o(T) = {1, -+, A} C T. By Theorem 2 of [1], there exists analytic
function f =) -, anz", f # 0, such that >, |a,| < 400 and f(T') = 0. Then,
it follows from Corollary 2.4 that (T — A\ Ip)--- (T — A\, is compact. Thus we
obtain a new proof Corollary 4.3 of [2], mentioned in the introduction.

Now we conclude this section by showing that the hypothesis ”essentially
unitary“ in Theorem 2.1 and Corollary 2.3 is necessary for a large class of con-
tractions. Let us first make some observations. An operator T' € L(H) is called
essentially normal if TT* — T*T is compact, see [5]. Notice that if T is a Cp—
contraction which is essentially unitary then 7™ is essentially unitary too. Hence
T is essentially normal since Iy — T*T and Iy — TT* are both compacts.

Proposition 2.5. Let T € L(H) be a Co—contraction which is essentially normal
and such that o(T)N'T is of Lebesque measure zero. Assume that f(T) is compact
for every f € A(D) wvanishing on o(T) NT. Then T is essentially unitary.

Proof. Let IC(H) be the ideal of compact operators on H and 7 : L(H) —
L(H)/K(H) be the canonical surjection. The essential spectrum oss(T) of T is
defined as the spectrum of 7(7") in the Banach algebra £(H)/KC(H). By Fatou the-
orem [8], there exists a non zero outer function f € A(ID) such that fi,yqr = 0.
By hypothesis f(T) is compact. Let A € D, the functions z — A and f have no

common zero in D. So there exists two functions ¢g; and go in A(D) such that
(z—=MXNg1+ fga = 1. Thus (T — Mg)g1(T) + f(T)g2(T) = Iy, which shows that
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m(T) — An(Ig) is invertible in L(H)/K(H). Hence 0.55(T) C o(T) NT. By Rudin-
Carleson-Bishop theorem (see [8] p. 81), there exists a function h € A(D) such
that Z = h(z), z € o(T) N'T. Since 7(T) is a normal element in the C*-algebra
L(H)/K(H), we get w(T)* = h(m(T)). On the other hand we have 1 — h(z)z =0
on o(T) N'T, which implies that 7(Ig) — 7(T)*n(T) = 7(Ig) — h(x(T))x(T) = 0.
Therefore Iy — T*T is compact. ]

3. The case of f(T) for f € H®

In this section we are interested in the compactness of f(7") when f € H*. The
spectrum of an inner function 6 is defined by

o(6) = clos 071 (0) U supp u,

where p is the singular measure associated to the singular part of § and supp p
is the closed support of u (see [13], p. 63). Notice that for a Cho—contraction 7' on
H, there exists a minimal inner function my that annihilates T, i.e my(T) = 0,
and we have o(T) = o(mr), (see [11, 13]). As a consequence of Corollary 2.3 we
prove the following result which was first established by Moore-Nordgren in [9],
Theorem 1. The proof given in [9] uses a result of Muhly [10]. We give here a
simple proof.

Lemma 3.1. Let T be an essentially unitary Co—contraction on H, and let 6 be
an inner function that divides mp (i.e mr /0 € H*®) and such that o(0) N'T is of
Lebesgue measure zero. Let ¢ € A(D) be such that Yjoo)nr = 0. If ¢ = bmr/0,
then ¢(T) is compact.

In particular the commutant {T'} contains a nonzero compact operator.

Proof. Let © = myp /6 and Ty = T'|g, be the restriction of T' to Hy := ©(T)H; Ty
is a Co—contraction with mg, = 6. Moreover Iy, — T{T1 = Pg,(Ig — T7T)|q, is
compact, where Pp, is the orthogonal projection from H onto H;. By Corollary
2.3, ¥(T1) is compact and thus ¢(T) = Y (T)O(T) = ¢(T1)O(T) is also compact.

O

Lemma 3.2. Let T be an essentially unitary Co—contraction on H, and let 6 be an
inner function that divides mp and such that o(0)NT is of Lebesgue measure zero.
Let f € H*™ be such that HI—P T f(T)=0. If = fmp/0, then ¢(T) is compact.

Proof. By the Rudin-Carleson-Bishop theorem, for every nonnegative integers n,
there exists h, € A(D) such that z" = h,(2),z € ¢(0) N T and ||h,|e = 1,
where ||.||oo is the supremum norm on T (see [8] p. 81). We have, for every n,
1—2"h,(2) =0, z € 0(9) NT, then by Lemma 3.1, (Ig — T"hy,(T)) (mr/60)(T) is
compact. So ¢(T) — T" f(T)h,(T) (mr/0)(T) is also compact. Since

17" () (T) (e /0)(T)| < |7 F(T)]| — O,
we deduce that ¢(T") is compact. O
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We need the following lemma about inner functions, which is actually con-
tained in the proof of the main result of [15]. For the completeness we include here
its proof.

Lemma 3.3. Let © be an inner function. There exists a sequence (0,,)n of inner
functions such that for each n, 0,, divides ©, o(0,,)NT is of Lebesgue measure zero
and for every z € D, lir+n 0,(2) = O(z).

n—-+0oo

Proof. Let B, be the Blaschke product constructed with the zeros of © contained
in the disk {|z| <1 —1/n}, each zero of © repeated according to its multiplicity.
Let v be the singular measure defining the singular part of ©. There exists F C T
of Lebesgue measure zero such that v(F) = v(T). There exists a sequence (K, ),
of compact subsets of F' such that nler;o v(K,) =v(F). For every n, let v, be the

measure on T defined by v,(F) = v(F N K,). Denote by S,, the singular inner
function associated to the measure v,,. We only need now to take 0,, = B, S,. 0O

We are now able to prove the main result of this section.

Theorem 3.4. Let T be an essentially unitary Cy—contraction on H. Let f € H*®.
Then the following assertions are equivalent.

(1) lim |77 F(T)] =0,
(2) f(T) is compact.

Proof. (1) = (2) : Let © = my and let (6,), be the sequence of inner functions
given by Lemma 3.3. For every n, we set ¢, = mrp/6,. Since (¢,), is a bounded
sequence in H*® and ¢,(z) — 1 (z € D), (¢n), converges to 1 uniformly on
compact subsets of . Then, for every k, there exists a nonnegative integer ny
such that |¢y, (2)] > e for |2| < k/(k + 1). Clearly the sequence (n); may be
chosen to be strictly increasing. Moreover for |z| > k/(k + 1), we have |2F| > e~ L.

So
et < 2| + |on,(2) < 2, 2 €D.

By he corona theorem ([13], p. 66), there exists two functions hj j and hg j in H*
such that

Z¥hi g + pnghoe =1 and |hy |, |hox| < C,
where C' is an absolute constant. Thus we get
THF(T) by (1) + F(T) (Do (T) = F(T),
and
|IT* f(T)h1, 1 (T)|| < C|IT* F(T)|| — O.
Consequently, f(T) = klln()lo F(T)pn, (T)hox(T) in the L(H) norm. Finally f(T') is

compact since by Lemma 3.2, for every k, f(T)gn, (T)h2 (1) is compact.
(2) = (1) : see the proof of Corollary 2.3. O
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As in Corollary 2.4, Theorem 3.4 holds for a Cy-contraction with ur < +oo.

Let T be a contraction on H. It is shown by Esterle, Strouse and Zouakia
in [6], that if f € A(D), then lim |[T™f(T)| = 0 if and only if f vanishes on
o(T) N'T. So Theorem 3.4 implies Corollary 2.3. Now, if T is completely non
unitary, Bercovici showed in [3] that if f € H* and lir{1 flrz) =0, for every
z€o(T)NT, then lim || T"f(T)| = 0. So it follows immediately from this fact

n—oo

and Theorem 3.4 the following result.

Corollary 3.5. Let T be an essentially unitary Co—contraction on H. Let f € H™.
If for every z € o(T)NT, lir{1 f(rz) =0, then f(T) is compact.
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