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Abstract. By the Von Neumann inequality every contraction on a
Hilbert space is polynomially bounded. A simple example shows that
this result does not extend to Banach space contractions. In this paper
we give general conditions under which an arbitrary Banach space con-
traction is polynomially bounded. These conditions concern the thinness
of the spectrum and the behaviour of the resolvent or the sequence of
negative powers. To do this we use techniques from harmonic analysis,
in particular, results concerning thin sets such as Helson sets, Kronecker
sets and sets that satisfy spectral synthesis.

1. Introduction

We denote by D the open unit disk of the complex plane C and by T its
boundary, T = {z, |z| = 1}. Let L(X) denote the algebra of all bounded
linear operators on the complex Banach space X. For T ∈ L(X), we denote
by Sp(T ) the spectrum of T . An operator T ∈ L(X) is said to be polynomi-
ally bounded if there exists a constant C > 0 such that for all polynomials
P we have

‖P (T )‖ ≤ C sup
|z|≤1
|P (z)|.

The Von Neumann inequality asserts that every contraction T on a Hilbert
space is polynomially bounded. This result doesn’t extend to contractions
acting on a Banach space. To see this it suffices to consider the operator
of multiplication by z on some non uniform Banach algebras of functions
defined on D.

In this paper we give sharp conditions on the spectrum of a contraction T ,
on the growth of the resolvent (λ−T )−1, and on the growth of the sequence
of negative powers (T−n)n≥0, which imply that T is polynomially bounded.

To describe the results let us introduce some definitions and notations.
If E is a closed subset of T, we denote by C(E) the space of all continuous
functions on E. The classical Wiener algebra A(T) is defined by

A(T) =

{
f ∈ C(T) : ‖f‖1 =

+∞∑
n=−∞

|f̂(n)| < +∞

}
,
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A(T) =

{
f ∈ C(T) : ‖f‖1 =

+∞∑
n=−∞

|f̂(n)| < +∞

}
,

where f̂(n) is the nth Fourier coefficient of f . We set

A+(T) =
{
f ∈ A(T) : f̂(n) = 0, n < 0

}
.

Let E be a closed subset of T. We recall that E is called a Helson set if every
continuous function on E can be represented as an absolutely convergent
Fourier series. We say that E satisfies spectral synthesis (for A(T)) if for
every function f ∈ A(T) vanishing on E, there exists a sequence of functions
vanishing on a neighborhood of E, which converges to f for the norm ‖.‖1.

In Section 4 we show (Theorem 4.1) that if T is an invertible isometry
such that Sp(T ) is a Helson set and satisfies spectral synthesis then T is
polynomially bounded. Conversely if E is a closed subset of T that is not
a Helson set or that does not satisfy spectral synthesis then there exists an
isometry with spectrum E that is not polynomially bounded.
We are also interested in operators with countable spectra. We prove (The-
orem 4.2) that if T is a contraction such that Sp(T ) is a countable Helson
set and if

lim sup
|z|→1−

(1− |z|) log+ ‖(z − T )−1‖ = 0.

or equivalently

lim sup
n→+∞

log ‖T−n‖√
n

= 0.

then T is polynomially bounded.
Notice that in this result the assumption that Sp(T ) is a Helson set is essen-
tial (Theorem 4.1). Also we show by examples that the hypotheses about
countability and the growth of ‖(z − T )−1‖ or ‖T−n‖ in this result are best
possible. Indeed for E any uncountable closed subset of T, we construct a
non polynomially bounded contraction T such that Sp(T ) ⊂ E, Sp(T ) is a
Helson set and T satisfies the condition

lim sup
|z|→1−

(1− |z|) log+ ‖(z − T )−1‖ = 0.

Also for every ε > 0 we get a non polynomially bounded contraction T such
that Sp(T ) = {1} and

lim sup
|z|→1−

(1− |z|) log+ ‖(z − T )−1‖ ≤ ε.

To obtain these results we first study contractions of the form

T : A+(T)/I −→ A+(T)/I
f + I −→ αf + I

where I is a closed ideal of A+(T) and α : z → z is the identity map. We
show (Theorem 3.1) that T is polynomially bounded if and only if I has the
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form I = ΘI+(E), where E is a closed Helson subset of T, Θ is a nonzero
constant or a finite Blaschke product and I+(E) = {f ∈ A+(T), f|E = 0}.

In Section 5 we are interested in contractions for which the spectrum is a
Kronecker set. We recall that a closed subset E of T is called a Kronecker set
if the set of functions {αn, n ∈ Z} is dense in {f ∈ C(E), |f(z)| = 1, (z ∈
E)}, for the supremum norm on E. We observe that if T is an isometry
such that Sp(T ) is a Kronecker set, then T is polynomially bounded. This
follows from Theorem 4.1 and a result of Varopolous ([21]), which says that
a Kronecher set is a Helson set and satisfies spectral synthesis. On the other
hand we show in Theorem 5.4 that if (βn)n≥0 is a sequence of real numbers
such that limn→+∞ βn = +∞ and βn > 1, n ≥ 1, then there exists a non
polynomially bounded contraction T such that Sp(T ) is a Kronecker set and
‖T−n‖ ≤ βn, n ≥ 0.
Notice finally that the study and results concerning thin sets considered here
can be found in the books [12], [7], [16] and [17] .

2. An interpolation theorem

Let Θ be an inner function in the unit disk. It is well known that Θ
admits a factorisation of the form Θ = λΘBΘSΘ, where λΘ is a complex
number of modulus 1, BΘ is the Blaschke product associated to the zero set
of Θ and SΘ is a singular inner function.

For λ ∈ D we set bλ(z) = |λ|
λ

λ−z
1−λz , z ∈ D, with the understanding that

b0(z) = z. We have BΘ =
∏
λ∈ΛΘ

bkλλ , where ΛΘ is the zero set of Θ, kλ the
multiplicity of λ and

SΘ(z) = exp
(∫

π

z + ζ

z − ζ
dµΘ(ζ)

)
,

where µΘ is a non–negative singular measure. Following [18], pp. 62-63, we
set

σ(Θ) = {λ ∈ D : lim inf
ζ∈D,ζ→λ

Θ(λ) = 0}

= ΛΘ ∪ supp(µΘ),

where supp(µΘ) is the support of the measure µΘ.
Let A(D) be the disk algebra, that is the set of all functions which are

continuous on D and holomorphic in D. It will be equipped with the norm
‖f‖∞ = supz∈T |f(z)|. We denote by H∞ the set of all holomorphic and
bounded functions on D. For f, g ∈ H∞, we say that f divides g if g/f ∈
H∞.

If I is a non empty subset of A(D) we set

h(I) = {z ∈ D : f(z) = 0 (f ∈ I)},

and we denote by ΘI the greatest common divisor of the inner factors of all
nonzero functions in I (see [19], Lemma 2 or [8], p. 85). If E is a closed
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subset of T we set

I(E) = {f ∈ A(D) : f|E = 0}.

It is shown in [19], Theorem 1, that if I is a closed ideal of A(D) then
I = ΘII(h(I)∩T) (see also [8], p. 85). Notice also the following result which
we will use below : if Θ is an inner function, h ∈ H∞ and if Θh ∈ A(D)
then h ∈ A(D) and h vanishes on σ(Θ) ∩ T ([19], Lemma 6 and Lemma 7).

We recall that

A(T) = {f ∈ C(T) : ‖f‖1 =
∑
n∈Z
|f̂(n)| < +∞}

and
A+(T) = {f ∈ A : f̂(n) = 0, n < 0}.

Every function f =
∑

n≥0 f̂(n)zn in A+(T), extended to D, defines an ele-
ment of A(D). So A+(T) will also be regarded as a subalgebra of A(D).

Let E be a closed subset of T. We denote by A(E) the algebra of all
functions on E which are the restrictions to this set of functions in A(D),
that is

A(E) = {f|E : f ∈ A(D)}.
Similarly we defineA(E) andA+(E). Thus E is a Helson set if C(E) = A(E).
Notice also that E is called a Carleson set if C(E) = A+(E). Obviously a
Carleson set is a Helson set. Wik showed in [23] that the converse of this
result is true. These sets are studied in many papers and books ([7], [9],
[12], [16], [23]).

Let M(T) denote the space of all finite Borel measures on T and let

H1
0 = {f ∈ L1(T), f̂(n) = 0, n ≤ 0}.

The distance of a measure µ ∈M(T) to H1
0 is

dist(µ,H1
0 ) = inf

f∈H1
0

‖µ− fdm‖M(T),

where m is the Lebesgue measure on T.
If I is a closed subspace of A(D), we set

I⊥ =
{
µ ∈M(T),

∫
T
f(ζ)dµ(ζ) = 0, (f ∈ I)

}
.

The following theorem is the main result of this section.

Theorem 2.1. Let I be a closed ideal of A(D). Then the following are
equivalent.
i) A(D) = A+(T) + I.
ii) h(I)∩T is a Helson set and ΘI is a constant or a finite Blaschke product.
iii) There exists a positive constant C such that for every µ ∈ I⊥, we have

dist(µ,H1
0 ) ≤ C sup

n≤0
|µ̂(n)|.
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The proof of this result requires some lemmas. If I is a nonempty subset
of A(D) and g ∈ A(D), we set

Ig = {f ∈ A(D) : gf ∈ I}.

Lemma 2.2. Let I be a closed ideal of A(D). Assume that B is a nonzero
constant or a finite Blaschke product that divides ΘI. The following are
equivalent.
i) A(D) = A+(T) + I.
ii) A(D) = A+(T) + IB.

Proof. The implication i) ⇒ ii) is obvious since I ⊂ IB. Assume now
that the equality A(D) = A+(T) + IB holds. Let f ∈ A(D). Since B is
a nonzero constant or a finite Blaschke product it is easily seen that there
exist a polynomial g and a function h ∈ A(D) such that f = g + Bh. Now,
by hypothesis, there exist g1 ∈ A+(T) and h1 ∈ IB such that h = g1 + h1.
So f = g + Bg1 + Bh1. We have clearly g + Bg1 ∈ A+(T) and Bh1 ∈ I.
Thus A(D) = A+(T) + I, which finishes the proof. �

Lemma 2.3. Let Θ be an inner function. Then the following are equivalent.
i) Θ is a constant or a finite Blaschke product.
ii) H∞ = A(D) + ΘH∞.

Proof. The implication i) ⇒ ii) is straightforward. To prove the
converse assume that the equality H∞ = A(D) + ΘH∞ holds. Assume also
that Θ = Θ1Θ2 where Θ1,Θ2 are inner functions. Hence there exists f ∈
A(D) and h ∈ H∞ such that Θ1 = f+Θh. We have Θ1(1−Θ2h) = f ∈ A(D).
As we have observed in beginning of this section, the function 1−Θ2h belongs
to A(D) and vanishes on σ(Θ1)∩T. It follows that Θ2h ∈ A(D) so h ∈ A(D)
and vanishes on σ(Θ2)∩T. Thus the function 1−Θ2h vanishes on σ(Θ1)∩T
and equals 1 on σ(Θ2)∩T, which implies that σ(Θ1)∩σ(Θ2)∩T = ∅. Now,
to finishes the proof, it suffices to show that if Θ is neither a constant nor
a finite Blaschke product then there exist two inner functions Θ1,Θ2 such
that Θ = Θ1Θ2 and σ(Θ1) ∩ σ(Θ2) ∩ T 6= ∅. Indeed if the singular inner
factor SΘ of Θ is not constant, we take Θ1 = S

1/2
Θ and Θ2 = Θ/Θ1, where

S
1/2
Θ (z) = exp

(
1
2

∫
T

z + ζ

z − ζ
dµΘ(ζ)

)
, z ∈ D.

In this case the support of µΘ is contained in σ(Θ1) ∩ σ(Θ2) ∩ T. Now if Θ
has infinitely many zeros, take (λn)n≥0 to be a sequence of zeros of Θ which
converges to some ζ ∈ T. We set Θ1 = Πk≥0bλ2k

and Θ2 = Θ/Θ1. We have
ζ ∈ σ(Θ1) ∩ σ(Θ2) ∩ T. This finishes the proof. �

Lemma 2.4. Let I be a closed ideal of A(D). If

A(D) = A+(T) + I

then
H∞ = A+(T) + ΘIH

∞.
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Proof. Assume that A(D) = A+(T) + I. Notice that I = ΘII(E),
where E = h(I) ∩ T. By the open mapping theorem there exists a constant
c > 0 such that for every f ∈ A(D) there exist g ∈ A+(T) and h ∈ I(E)
with f = g + ΘIh and ‖g‖1 ≤ c‖f‖∞. We have

‖h‖∞ = ‖ΘIh‖∞ = ‖f − g‖∞ ≤ (1 + c)‖f‖∞.

Let f ∈ H∞. For 0 ≤ r < 1, we set fr(z) = f(rz), z ∈ D. The functions
fr are clearly in A(D). By the observation above there exist gr ∈ A+(T)
and hr ∈ I(E) such that fr = gr + ΘIhr, ‖gr‖1 ≤ c‖f‖∞ and ‖hr‖∞ ≤
(1 + c)‖f‖∞. The mapping f → (f̂(n))n≥0 is an isometric isomorphism of
the Banach space A+(T) onto `1, the Banach space of all complex sequences
(xn)n≥0 such that

∑
n≥0 |xn| < +∞. We may then identify A+(T) with the

dual of c0, the Banach space of all complex sequences that converge to 0.
This induces a w*-topology on A+(T). For this topology, the closed bounded
subsets of A+(T) are compact. Since the family {gr, 0 ≤ r < 1} is bounded
in A+(T), there exist g ∈ A+(T) and a sequence rk → 1 such that (grk)k
converges to g for the w*-topology. This implies in particular that (grk)k
converges to g uniformly on every compact subset of D. Now the sequence
(hrk)k is bounded for the supremum norm on D. It follows from the Montel
theorem that there exists a subsequence of (hrk)k which converges uniformly
on every compact subset of D to some function h ∈ H∞. Now it is easily
seen that f = g + ΘIh, which finishes the proof. �

Remark 2.5. Let Θ be an inner function. Notice that equality H∞ =
A+(T) + ΘH∞ implies that A(D) = A+(T) + I, where I = ΘI(σ(Θ) ∩ T).

Proof of Theorem 2.1 : i) ⇒ ii) Suppose that A(D) = A+(T) + I.
Since every function in I vanishes on h(I) ∩ T, we have A(h(I) ∩ T) =
A+(h(I) ∩ T). Notice that I 6= {0} and hence h(I) ∩ T is of Lebesgue
measure zero. Thus we have C(h(I) ∩ T) = A(h(I) ∩ T) ( [8], p. 81). It
follows then that h(I) ∩ T is a Helson set. On the other hand, combining
Lemma 2.4 and Lemma 2.3 we see that ΘI is constant or a finite Blaschke
product.
ii)⇒ i) Notice that a Helson set is of Lebesgue measure zero. Using again

a result from ([8], p. 81), we get that C(E) = A(E), where E = h(I)∩T. It
follows from [23] that C(E) = A+(E). Thus A(E) = A+(E) or equivalently
A(D) = A+(T) + I(E). Since ΘI is constant or a finite Blaschke product we
have, clearly, IΘI

= I(E). So A(D) = A+(T) + IΘI
. It follows now from

Lemma 2.2 that A(D) = A+(T) + I.
i) ⇔ iii) The Riesz representation theorem identifies the dual of C(T)

with the space M(T), by the formula

< f, µ >=
∫

T
f(ζ)dµ(ζ), (f ∈ C(T), µ ∈M(T)).

By the F. and M. Riesz theorem ([8], p. 47), we may identify the dual of
A(D) with the space M(T)/H1

0 . So the norm of a measure µ ∈ M(T), in
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the dual of A(D), is equal to dist(µ,H1
0 ). Moreover the norm of µ in the

dual of A+(T) is equal to 2π supn≤0 |µ̂(n)|. On the other hand the equality
A(D) = A+(T) + I is equivalent to the surjectivity of the map f → f + I,
from A+(T) into A(D)/I. So the equivalence between the assertions i) and
iii) follows from [16], Lemma 2, p. 244. �

3. Polynomially bounded operators

If X is a Banach space, we denote by PB(X) the set of all polynomially
bounded operators acting on X. If E is a closed ideal of T, we set

I+(E) = {f ∈ A+(T), f = 0 on E}.
Let I be a closed ideal of A+(T). We denote by I∞ the closed ideal of A(D)
generated by I. In fact I∞ is the closure of I in A(D) for the norm ‖.‖∞.
Notice that we have h(I) = h(I∞) and ΘI = ΘI∞ .

We will use the same symbol ‖.‖1 for the norm in the quotient alge-
bra A+(T)/I as we use for the norm in A+(T) : if f ∈ A+(T) we write
‖f + I‖1 := infg∈I ‖f + g‖1. Similarly the norm in the quotient algebras of
A(D)/I will be denoted by ‖.‖∞.

Theorem 3.1. Let I be a closed ideal of A+(T) and let

TI : A+(T)/I −→ A+(T)/I
f + I −→ αf + I

where α : z → z is the identity map. Then the following are equivalent.
i) TI ∈ PB(A+(T)/I).
ii) h(I) ∩ T is a Helson set, ΘI is a constant or a finite Blaschke product
and I = ΘII

+(h(I) ∩ T).

Proof. i)⇒ ii) Suppose that TI is polynomially bounded. By definition
there exists a constant C > 0 such that, for all polynomials P , we have
‖P (TI)‖ ≤ C‖P‖∞. Since the set of polynomials is dense in A(D) we can
define the functionnal calculus g(TI), g ∈ A(D), and the inequality ‖g(TI)‖ ≤
C‖g‖∞ remains true. For g ∈ A+(T), g(TI) is the operator f+I −→ gf+I,
f ∈ A+(T)/I, and ‖g(TI)‖ = ‖g + I‖1. Hence if g ∈ A+(T) and h ∈ I, we
have

‖g + I‖1 = ‖g + h+ I‖1 = ‖(g + h)(TI)‖ ≤ C‖g + h‖∞.
Since I is dense in I∞, we obtain

(3.1) ‖g + I‖1 ≤ C‖g + I∞‖∞.
This shows that the range of the canonical map

i : A+(T)/I −→ A(D)/I∞

f + I −→ f + I∞

is closed. Since it is dense in A(D)/I∞, it follows that i is surjective. This
means that A(D) = A+(T) + I∞. Now Theorem 2.1 implies that h(I)∩T is
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a Helson set, ΘI is a constant or a finite Blaschke product.
Notice that the imbeding I ⊂ I∞ ∩ A+(T) holds always, while the con-
verse I∞ ∩ A+(T) ⊂ I follows immediately from inequality (3.1). So we
have I = I∞ ∩ A+(T). Now since I∞ = ΘII(h(I) ∩ T) and since ΘI is a
constant or a finite Blaschke product, we get easily that I = ΘII

+(h(I)∩T).

ii)⇒ i) By Lemma 2.1 we have A(D) = A+(T) + I∞, which means that
the canonical map i : A+(T)/I −→ A(D)/I∞ is surjective. In fact i is
invertible since I = ΘII

+(h(I) ∩ T). Consider now the operator U defined
by

U : A(D)/I∞ −→ A(D)/I∞

f + I∞ −→ αf + I∞

Clearly U is a bounded linear operator on A(D)/I∞, and for every polyno-
mial P we have

‖P (U)‖ = ‖P + I∞‖∞ ≤ ‖P‖∞.
On the other hand for every polynomial P we have P (TI) = i−1P (U)i. So
‖P (TI)‖ ≤ ‖i−1‖‖P‖∞ and TI ∈ PB(A+/I), which finishes the proof. �

Let T be an operator on a Banach space X such that supn≥0 ‖Tn‖ < +∞.
We associate T with the following continuous morphism

(3.2)
ΦT : A+(T) −→ L(X)

f −→ f(T ) =
∑
n≥0

f̂(n)Tn.

Notice that the kernel ker(ΦT ) is a closed ideal of A+(T). The following
result gives in particular a criterion in terms of ker(ΦT ) which implies that
T ∈ PB(X).

Theorem 3.2. Let I be a closed ideal of A+(T). Then the following are
equivalent.
i) Every operator T such that supn≥0 ‖Tn‖ < +∞ and I ⊂ ker(ΦT ) is
polynomially bounded.
ii) h(I) ∩ T is a Helson set, ΘI is a constant or a finite Blaschke product
and I = ΘII

+(h(I) ∩ T).

Proof. i)⇒ ii) Consider the contraction defined in Theorem 3.1

TI : A+(T)/I −→ A+(T)/I
f + I −→ αf + I

We have clearly ker(ΦTI ) = I so that TI ∈ PB(A+(T)/I). It follows from
Theorem 3.1 that ii) holds.
ii)⇒ i) Let T be an operator on a Banach spaceX such that supn≥0 ‖Tn‖ <

+∞ and I ⊂ ker(ΦT ). There exists a continuous morphism

Φ̃T : A+(T)/I → L(X)
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such that ΦT = Φ̃T ◦ π, where π : A+(T) → A+(T)/I is the canonical
surjection.

Let f ∈ A+(T). We have

‖f(T )‖ = ‖ΦT (f)‖ = ‖Φ̃T ◦ π(f)‖ ≤ ‖Φ̃T ‖‖π(f)‖1 ≤ ‖ΦT ‖‖f(TI)‖.
It follows from Theorem 3.1 that ‖f(TI)‖ ≤ C‖f‖∞, where C is a positive
constant independent of f . So for every function f ∈ A+(T), we have
‖f(T )‖ ≤ C‖Φ̃T ‖‖f‖∞, which proves that T ∈ PB(X). �

We deduce the following well-known result (see for example [24]).

Corollary 3.3. Let T be an operator such that supn≥0 ‖Tn‖ < +∞. Assume
that there exists a nonzero polynomial P such that P (T ) = 0. Then T is
polynomially bounded.

Proof. We set Z = {λ ∈ D, P (λ) = 0}. Notice that Z is not empty
since it contains Sp(T ). Let I be the closed ideal of A+(T) generated by P .
Since h(I) = Z is a finite set it follows from the principal result of [10] that
I = I∞ ∩A+(T) (see also [4] and [6]). It is easily seen that ΘI =

∏
λ∈Λ b

kλ
λ ,

where Λ = Z∩D and kλ is the mutiplicity of λ. So we have I = ΘII
+(Z∩T).

Now the corollary follows from the inclusion I ⊂ ker(ΦT ) and Theorem 3.2.
�

4. Isometries and contractions with countable spectra

If M is a subset of C(T), we set

h̃(M) = {z ∈ T, f(z) = 0, (f ∈M)},
and if f ∈ C(T), we recall that ‖f‖∞ = supz∈T |f(z)|.

Let ω = (ωn)n≥1 be a sequence of real numbers with ωn ≥ 1 and ωn+m ≤
ωnωm, for all n,m ∈ Z. We say then that ω is a weight. The Beurling
algebra Aω(T) defined by the weight ω is the set of functions

f(eiθ) =
∑
n∈Z

f̂(n)einθ with ‖f‖ω :=
∑
n∈Z
|f̂(n)|ωn < +∞.

Let E be a closed subset of T. We set

Iω(E) = {f ∈ Aω(T), f|E = 0}
and we denote by Jω(E) the closure in Aω(T) of the set of functions in
Aω(T) which vanish on a neighborhood of E. Clearly Iω(E) and Jω(E)
are closed ideals of Aω(T) and we have Jω(E) ⊂ Iω(E). Suppose that∑

n∈Z
logωn
1+n2 < +∞, so that the algebra Aω(T) is regular ([14], p. 118, Ex.

7). Then we have h̃(Jω(E)) = h̃(Iω(E)) = E. Moreover if I is a closed
ideal of Aω(T) such that h̃(I) = E then we have Jω(E) ⊂ I ⊂ Iω(E). We
say that E satisfies spectral synthesis for Aω(T) if Jω(E) = Iω(E), which
is equivalent to the existence of a unique closed ideal I of Aω(T) such that
h̃(I) = E. When ω(n) = 1 for every integer n, we will write I(E) [resp.
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J(E)] instead of Iω(E) [resp. Jω(E)]. Notice that every closed countable
subset of T satisfies spectral synthesis for Aω(T) for all weights ω such that
ω(n) = 1 for n ≥ 0 and limn→+∞

logω(−n)√
n

= 0 ( [25]).
We have the following result, which gives a general criterion for an isom-

etry to be polynomially bounded.

Theorem 4.1. Let E be a closed subset of T. Then the following are equiv-
alent.
i) Every isometry T such that Sp(T ) ⊂ E is polynomially bounded.
ii) E is a Helson set and satisfies spectral synthesis for A(T).

Proof. i)⇒ ii) Let I be a closed ideal of A(T) such that h̃(I) = E and
consider the isometry

T : A(T)/I −→ A(T)/I
f + I −→ αf + I

We have Sp(T ) = E and then T ∈ PB(A(T)/I). Let P =
∑
|k|≤n akα

k be a
trigonometric polynomial. Since multiplication by α acts as an isometry on
A(T) and on C(T), and since T ∈ PB(A(T)/I), we have

‖P + I‖1 = ‖αnP + I‖1 = ‖(αnP )(T )‖ ≤ C‖αnP‖∞ ≤ C‖P‖∞,
where C is a constant independent of P . It follows that for every f ∈ A(T),
we have

‖f + I‖1 ≤ C‖f + I‖∞.
Let M denote the closed ideal generated by I in C(T). Since the set of
trigonometric polynomials is dense in C(T), it is easily seen that M is the
closure of I in C(T). We have then, with the help of the above inequality,
that

(4.1) ‖f + I‖1 ≤ C‖f +M‖∞, (f ∈ A(T)).

Notice that h̃(M) = E and, according to the structure of closed ideals of
C(T), we have M = {f ∈ C(T), f|E = 0}. It follows from this and inequality
(4.1) that I = I(E), which shows that E satisfies spectral synthesis for
A(T). Inequality (4.1) shows also that the range of the canonical imbedding
i : A(T)/I → C(T)/M is closed. The range of i is dense in C(T)/M and so
i is surjective. Therefore we have C(T) = A(T) +M , which means that E is
a Helson set.
ii)⇒ i) Let T be an isometry on X such that Sp(T ) ⊂ E. We set

ΨT : A(T) −→ L(X)

f −→ f(T ) =
∑
n∈Z

f̂(n)Tn.

The kernel ker(ΨT ) is a closed ideal of A(T) such that h̃(ker(ΨT )) = Sp(T ).
Thus ker(ΨT ) ⊃ J (Sp(T )) ⊃ J(E). Since E satisfies spectral synthesis in
A(T) we have J(E) = I(E) and so ker(ΨT ) ⊃ I(E). We have ΨT = ΦT on
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A+(T), where ΦT is defined in (3.2). This implies that ker(ΦT ) = ker(ΨT )∩
A+(T) ⊃ I+(E). It follows then from Theorem 3.2 that T ∈ PB(X). �

Now we will turn to contractions with countable spectra. For such oper-
ators we obtain the following result.

Theorem 4.2. Let T ∈ L(X) be a contraction on a Banach space X such
that Sp (T ) is a countable Helson subset of T and

(4.2) lim sup
|z|→1−

(1− |z|) log+ ‖(z − T )−1‖ = 0.

or equivalently

(4.3) lim sup
n→+∞

log ‖T−n‖√
n

= 0.

Then T is polynomially bounded.

Proof. Notice that the equivalence between Conditions (4.2) and
(4.3) follows from [2], Lemma 2. Assume now that T is a contraction such
that Sp(T ) is a countable Helson set and such that Condition (4.3) holds.
We set ω(n) = ‖Tn‖, (n ∈ Z). Clearly we have ω(n) = 1 for n ≥ 0
and limn→+∞

logω(−n)√
n

= 0. For f ∈ Aω(T), we set ΨT (f) = f(T ) :=∑∞
−∞ f̂(n)Tn. The kernel ker(ΨT ) is a closed ideal of Aω(T) such that

h̃(ker(ΨT )) = Sp(T ). Since closed countable sets satisfy spectral synthesis
in Aω(T) ([25]), we obtain that ker(ΨT ) = {f ∈ Aω(T), f = 0 on Sp(T )}.
The equality ΨT = ΦT holds on A+(T) and therefore ker(ΦT ) = I+(Sp(T )).
Now by Theorem 3.2 we get that T ∈ PB(X). �

Remark 4.3. 1. It is shown in [26] that if T is a contraction such that Sp(T )
is a countable subset of T and satisfies Condition (4.2) or (4.3) then T is
an isometry. So combining this result and Theorem 4.1 we obtain Theorem
4.2.

2. Notice that finite unions of independent countable closed subets of
T are Helson sets. Also finite unions of Hadamard sets are Helson sets
([9], p. 54; see also [16], Proposition 6, p. 332). Moreover these sets satisfy
spectral synthesis for A(T). See also Section 5 and [16], Chapter X, for some
complementary information about sets which are Helson sets and satisfy the
spectral synthesis for A(T).

Now we will be interested in the hypotheses of Theorem 4.2 and we will
show that they are best possible. We know by Theorem 4.1 that if E is not a
Helson set then there exists a non polynomially bounded isometry such that
Sp(T ) ⊂ E. Obviously an invertible isometry satisfies a stronger conditions
than (4.2) and (4.3). Now we study the condition related to the countability
of the spectrum and conditions (4.2) and (4.3). To do this let us first make
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some observations. Let I 6= {0} be a closed ideal of A+(T). We denote by
TI the operator defined on A+(T)/I by

TI : A+(T)/I −→ A+(T)/I
f + I −→ αf + I.

Notice that TI is a contraction such that Sp(TI) = h(I). Let f ∈ A+(T).
We denote by µI (resp. µf ) the measure defining the singular inner factor
of ΘI (resp. f) and by νI (resp. νf ) the discrete part of µI (resp. µf ). For
λ ∈ D, z ∈ D, we set

φλ(z) =
{

f(z)−f(λ)
z−λ if z 6= λ

f ′(λ) if z = λ.

The function φλ is in A+(T) and we have the equality in the Banach algebra
A+(T)/I,

(φλ + I) = (α− λ+ I)−1(f − f(λ) + I), λ ∈ D \ h(I).

Suppose now that h(I) ⊂ T and f ∈ I. We have

‖f(λ)(α− λ+ I)−1‖1 = ‖φλ + I‖1
≤ ‖φλ‖1

≤ 2‖f‖1
1− |λ|

.

It follows then from [1], part d) of Lemma 5, that for every ε > 0, we have

‖(λ− TI)−1‖ = O

(
1

1− |λ|
exp

(
ε+ 2‖νf‖

1− |λ|

))
, |λ| → 1− .

It is shown in [6], Lemma 1.3, that there exists a sequence {fn}n≥1 ⊂ I such
that limn→∞ ‖µfn−µI‖ = 0, which implies in particular that limn→∞ ‖νfn−
νI‖ = 0. Thus we obtain

(4.4) lim sup
|λ|→1−

(1− |λ|) log+ ‖(λ− TI)−1‖ ≤ 2‖νI‖.

The following result shows that Condition (4.2) ( or (4.3)) in Theorem
4.2 is best possible.

Proposition 4.4. Let ε > 0. There exists a contraction T such that Sp(T ) =
{1},

lim sup
|z|→1−

(1− |z|) log+ ‖(z − T )−1‖ ≤ ε,

and T is not polynomially bounded.

Proof. Let Θ be the inner function defined by

Θ(z) = exp
(
ε

2
z + 1
z − 1

)
, |z| < 1,
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and let I = ΘH∞ ∩ A+(T). Using Theorem 3.1 and inequality (4.4) it is
easily seen that T = TI is the desired contraction. �

Now we will show that the hypothesis in Theorem 4.2 about countability
of the spectum is best possible. First we recall that E is called a mul-
tiplicity set if there exists a nonzero complex sequence (cn)n∈Z such that
limn→+∞

∑n
k=−n cne

ikt = 0 for every eit ∈ T \ E.

Proposition 4.5. Let E be a closed uncountable subset of T. There exists
a contraction T such that Sp(T ) is a Helson set contained in E, T satisfies
Condition (4.2) and T is not polynomially bounded.
Moreover if we assume that E is a multiplicity set then T can be chosen to
be an isometry.

Proof. Since E is closed and uncountable, by [1], Lemma 5.3, there
exists a perfect closed set F contained in E and which satisfies the Carleson
condition, that is

(4.5)
∫ 2π

0
log

1
d(eit, F )

dt < +∞,

where d(eit, F ) is the distance from eit to F . Now by a well known result
([9], p. 92) there exists a perfect closed Kronecker set G contained in F (see
also [16], p. 338). Since G is uncountable, a classical result of Lebesgue
asserts that G supports a nonzero continuous positive measure µ. Let Θ be
the singular inner function defined by µ and let

I = ΘH∞ ∩A+(T).

Since G ⊂ F , G satisfies also the Carleson condition (4.5). According to [20],
Theorem 3.3, there exists a nonzero outer function h which is infinitely dif-
ferentiable on D and which vanishes together with all its derivatives exactly
on G. It is easily seen that Θf ∈ I. Hence h(I) ⊂ G. We set T = TI . Thus
T is a contraction with Sp(T ) = h(I) ⊂ G. Notice that every Kronecker set
is a Helson set ([10], p. 89; see also section 5 below). It follows that G and
then Sp(T ) are Helson sets. We get from inequality (4.4) that T satisfies
Condition (4.2). Finally T is not polynomially bounded by Theorem 3.1.
So T satisfies all the required conditions.

Assume now that E is a multiplicity set. By a theorem of Kaufman, [15],
there exists a Helson set F ⊂ E which is also a multiplicity set (see also
[16], Theorem 9, p. 250). It follows from [12], Theorème III and IV, pp.
142-143, that F does not satisfy spectral synthesis in A(T). By Theorem
3.2 there exists an isometry T which is not polynomially bounded and such
that Sp(T ) ⊂ F . It is clear that Sp(T ) is a Helson set, which finishes the
proof. �
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5. Contractions with spectra contained in Kronecker sets

A holomorphic function ϕ on C\T such that lim|z|→+∞ ϕ(z) = 0 is called a
hyperdistribution on T (or hyperfunction). We denote by HD(T) the space
of all hyperdistributions on T. Let ϕ ∈ HD(T). The Fourier coefficients
(ϕ̂(n))n∈Z of ϕ ∈ HD(T) are given by the formula

ϕ(z) =
{ ∑

n≥0 ϕ̂(n)zn, |z| < 1
−
∑

n<0 ϕ̂(n)zn, |z| > 1.
The support of ϕ ∈ HD(T), which we denote by supp(ϕ), is the smallest
closed subset F of T such that there exists a holomorphic function on C\F ,
which agrees with ϕ on C \ T.

A hyperdistribution ϕ ∈ HD(T) is called a pseudofunction [resp. pseu-
domeasure] if lim|n|→∞ ϕ̂(n) = 0 [resp. supn∈Z |ϕ̂(n)| < +∞]. We denote by
PM(E) [resp. M(E)] the set of the pseudomeasures [resp. measures] with
support contained in E.

Let ω be a regular weight and E a closed subset of T. We denote by
HDω(E) the set of all hyperdistributions ϕ such that supp (ϕ) ⊂ E and
‖ϕ‖?ω := supn∈Z

|ϕ̂(n)|
ω(−n) <∞. We set

HD0
ω(E) = {ϕ ∈ HDω(E), lim

n→−∞
ϕ̂(n) = 0}.

The space (HDω(T), ‖.‖ω) can be identified with the dual of Aω(T), the
duality being implemented by the formula

< f,ϕ >=
∑
n∈Z

f̂(n)ϕ̂(−n), (f ∈ Aω(T), ϕ ∈ HDω(T)).

A closed subset E of T is said to be without true pseudomeasures (WTP ) if
PM(E) = M(E). Notice that E is a set WTP if and only if E is a Helson
set and satisfies spectral synthesis for A(T) (see [16], Chap. X, p. 330).
Moreover Varopoulos showed in [21] that every Kronecker set is WTP . So
a Kronecker set is a Helson set and satisfies spectral synthesis for A(T).

We will need the following two elementary lemmas to establish the main
result of this section.

Lemma 5.1. Let ω be a weight such that ω(n) = 1, n ≥ 0 and let I be a
closed ideal of Aω(T). Consider the operator

T : Aω(T)/I −→ Aω(T)/I
f + I −→ αf + I

If T ∈ PB(Aω(T)/I) then I+ = ΘI+I(h(I+) ∩ T) ∩ A+(T), where I+ =
I ∩A+(T).

Proof. Suppose that T ∈ PB(Aω(T)/I). There exists a constant C > 0
such that for every f ∈ A+(T),

‖f + I‖ω = ‖f(T )‖ ≤ C‖f‖∞.
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For g ∈ I+, we have ‖f+I‖ω ≤ C‖f+g‖∞. Since I+ is dense in (I+)∞, the
closed ideal generated by I in A(D), we obtain ‖f + I‖ω ≤ C‖f + (I+)∞‖∞.
It follows from this inequality that if f ∈ (I+)∞ ∩ A+(T) then we have
f ∈ I. So (I+)∞ ∩ A+(T) ⊂ I+. Therefore i) holds since the inclusion
I+ ⊂ (I+)∞ ∩A+(T) is obvious and (I+)∞ = ΘI+I(h(I+) ∩ T). �

Remark 5.2. Notice that if I+ is a closed ideal of A+(T) such that h(I+)∩
T is a finite or countable set, or contained in a Cantor set, then I+ =
ΘI+I(h(I+)∩T)∩A+(T) ([10], [4], [6]). In the opposite direction J. Esterle
constructed in [5] a closed ideal in A+(T) such that I+ 6= ΘI+I(h(I+) ∩
T) ∩ A+(T), which shows that the Bennett-Gilbert conjecture about the
structure of the closed ideals of A+(T) fails.

Lemma 5.3. Let (δn)n≥1 be a sequence of real numbers such that limn→+∞ δn =
+∞ and δn > 1 for every n ≥ 1. Then there exists an unbounded non–
decreasing sequence (γn)n≥1 such that

(5.1) 1 ≤ γn ≤ δn and γn+m ≤ γnγm, n,m ≥ 1.

Proof. Without loss of generality we can assume that (δn)n≥1 is non–
decreasing, since otherwise we could consider the sequence (δ′n)n≥1 defined
by δ′n = infk≥n δk.

For n ≥ 1, we set
γn = inf δn1δn2 · · · δnk ,

where the infimum is taken over all families of integers k, n1 · · ·nk, greater
than or equal to 1 and such that n1 +n2 + · · ·nk = n. A simple computation
shows that (γn)n≥1 is non–decreasing and satisfies Condition (5.1). It remain
to check that (γn)n≥1 is unbounded. For this consider integers n ≥ 1, k ≥ 1
and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk be such that n1 + n2 + · · · + nk = n and
γn = δn1δn2 · · · δnk . We have clearly γn ≥ max(δkn1

, δnk). Since knk ≥ n,

we have k ≥
√
n or nk ≥

√
n. So γn ≥ min(δ

√
n

1 , δ[
√
n]), where [

√
n] is the

nonnegative integer such that [
√
n] ≤

√
n < [

√
n] + 1. Now since δ1 > 1 and

limn→+∞ δn = +∞ we have also limn→+∞ γn = +∞. �

Before stating the main result of this section we will make an observation.
Denote by C1([0, 1]) [resp. C1(T)] the Banach algebra of all continuously
differentiable functions on [0, 1] [resp. T]. The structure of the closed ideals
of C1([0, 1]) is known (see [22] and [13]). Indeed I is a closed ideal of C1([0, 1])
if and only if there exist two closed subsets E1 ⊂ E0 of [0, 1] such that

I = {f ∈ C1([0, 1]), f (k) = 0 on Ek (k = 0, 1)}
Since C1([0, 1]) is a regular Banach algebra it follows that a function which
vanishes with its derivative on a closed set E ⊂ [0, 1], satisfies spectral
synthesis for E. This means that there exists a sequence of functions
(fn)n ⊂ C1([0, 1]) vanishing on a neighbohood of E such that limn→∞ ‖fn−
f‖C1([0,1]) = 0. Now it is easily seen that this result holds also in C1(T).
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Theorem 5.4. i) If T is an invertible isometry such that Sp(T ) is a Kro-
necker set then T is polynomially bounded.
ii) Let (βn)n≥1 be a sequence of real numbers such that limn→+∞ βn = +∞
and βn > 1 for every n ≥ 1. Then there exists a non polynomially bounded
contraction T such that Sp(T ) is a Kronecker subset of T and ‖T−n‖ ≤
βn, n ≥ 1.

Proof. As we have observed before, every Kronecker set is a Helson set
and satisfies the spectral synthesis for A(T). So the assertion i) follows from
Theorem 4.1.
Now we prove ii). We set δn = min(βn, (1+n)1/3), n ≥ 1. Then limn→+∞ δn =
+∞ and δn > 1 for every n ≥ 1. By Lemme 5.3 there exists an unbounded
non-decreasing sequence (γn)n≥1 satisfying Condition (5.1). We set ω(n) = 1
for n ≥ 0 and ω(n) = δ−n for n < 0. Then ω is a regular weight.
Let E be a totally discontinous closed subset of T which is a multiplicity
set. Assume moreover that E satisfies the Carleson condition (4.5). Take
for example E = Eξ, where Eξ is the perfect symmetric set of constant ratio
ξ ∈ (0, 1/2) with 1/ξ not a Pisot number (see [12], Théorème IV, p. 74).
There exists a nonzero pseudofunction with support contained in E ([12],
Chapitre V, p. 54). It follows then from Esterle’s result ([5], Theorem 4.4)
that there exists a Kronecker set F ⊂ E and a nonzero hyperdistribution
ϕ ∈ HD0

ω(F ).
Notice that A+(T) can be regarded as the dual of c0, the space of all com-
plex sequences converging to zero. This induces a w*-topology on A+(T).
As observed before, since F is a Kronecker set, F is also a Helson set
and by the Wik result [23], F is a Carleson set, that is A(E) = A+(E).
So F is an AA+ set, which means that A(E) = A+(E). Thus we have
supn≥0 ‖π(α)−n‖1 < +∞, where π : A+(T)→ A+(T)/I+(F ) is the canoni-
cal surjection and α : z → z is the identity map. It follows from [5], Theorem
3.1, that I+(F ) is dense in A+(T) for the w*-topology. Thus ϕ /∈ I+(F )⊥.
On the other hand we have ϕ ∈ Jω(F )⊥. Therefore I+(F ) 6= Jω(F )+, where
Jω(F )+ = Jω(F ) ∩A+(T).
Since F ⊂ E, F also satisfies the Carleson condition. According to [20], The-
orem 3.3, there exists a non zero outer function h which is infinitely differen-
tiable on D and which vanishes together with all its derivatives, exactly on
F . By the observation we made before the theorem, there exists a sequence
of functions in C1(T), vanishing in a neighborhood of F and converging to h
for the norm ‖.‖C1(T). Since we have ωn ≤ (1 + |n|)1/3, n ∈ Z, the imbeding
C1(T) ⊂ Aω(T) is continuous. We deduce that h ∈ Jω(F ). Hence ΘJω(F )+

is constant and h(Jω(F )+) = F . Therefore ΘJω(F )+I (h(Jω(F )+) ∩ T) ∩
A+(T) = I+(F ). Since I+(F ) 6= Jω(F )+, it follows from Lemma 5.1 that
the operator

T : Aω(T)/Jω(F ) −→ Aω(T)/Jω(F )

f + Jω(F ) −→ αf + Jω(F )
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is not polynomially bounded. Notice that T is a contraction such that
Sp (T ) = F and ‖T−n‖ ≤ ω−n ≤ βn, n ≥ 1, which finishes the proof. �

Remark 5.5. 1. The condition “T is an invertible isometry” in part i) of
Theorem 5.4 may be replaced by the conditon

(5.2) sup
n∈Z
‖Tn‖ < +∞.

Indeed, assume that T ∈ L(X) satisfies (5.2), where X is a Banach space
with norm ‖.‖. For x ∈ X, we set ‖|x‖| = supn∈Z ‖Tnx‖. Then the norm
‖|.‖| is equivalent to the norm ‖.‖ and T is an isometry with respect to ‖|.‖|.

2. The conditions on the sequence (βn)n≥1 in part ii) of Theorem 5.4
are optimal. Indeed, let T be a contraction such that Sp(T ) is a Kronecker
set and such that ‖T−n‖ ≤ βn. Assume that (βn)n≥1 does not converge
to +∞ or that βn = 1 for some n ≥ 1. Then it is easily seen that there
exists a subsequence of (T−n)n≥1 which is bounded. Since (‖T−n‖)n≥1 is
non–decreasing we get that supn≥1 ‖T−n‖ < +∞. It follows now from the
above remark and part i) of Theorem 5.4 that T is polynomially bounded.

Acknowledgements. I thank Professor Thomas Ransford for the in-
teresting discussions we had which motivated me to work with polynomially
bounded operators.
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